Fatty acid hydrazides in Organic Synthesis:

Novel Synthesis of 6-alkyl-3-aryl-5-imino-7-oxo-2,5,6,7-tetrahydro-1*H*-1,2-diazepine-4-carbonitrile and 6-alkyl-3-aryl-5,7-dioxo-2,5,6,7-tetrahydro-1*H*-1,2-diazepine-4-carbonitrile

Elham A. A. Yousef^a, M. E. A.Zaki^b M.G.Megahed^a

a) Fats and Oils Department, National Research Centre, Cairo, Egypt
b) Photochemistry Department, National Research Centre, Cairo, Egypt
meazaki@nrc.org.eg

Abstract

1,2- Diazepinone derivatives 5a-o and 7a-c were synthesized from the reaction of α,β -unsaturated nitriles 2a-d and 6a-c with caproic, caprylic, capric and lauric acid hydrazides respectively.

Introduction

During the last century, the production and utilization of oils, fats and their derivatives grow both in size and diversity in the industrial field 1,2 . There has been a competition between oleochemicals and petrochemicals . More recently, some fatty acid derivatives have shown insecticidal and antimicrobial properties. Moreover, α,β -unsaturated nitriles are versatile reagents which have been extensively utilized in heterocycles synthesis $^{3-5}$. The reactivity of α,β - unsaturated nitriles towards fatty acid hydrazides have never been reported before .

In connection with the ongoing work aimed to the synthesis of fused heterocycles and study the reactivity of fatty acid hydrrazide towards carbon carbon double bond derivatives as electron-defficient alkenes.

Trials to prepare of N-amino-2-pyridones I by using fatty acid hydrazides was failed 1,2-diazipinone derivatives 5,7 were isolated instead.

RESULTS AND DISCUSIONS

Compounds 1 a-d namely caproic, caprylic, capric and lauric acid hydrazides reacted with benzylidene malononitriles derivatives 2a-d which are easily prepared according to a knoevengel condensation⁶⁻⁹. The reaction is easily performed in ethanol. The nature of the substituent present in the benzene ring of benzylidene malononitrile has a little effect on the reaction. The reaction may be assumed to proceed as shown in Scheme 1, whish is assumed to involve the Michael addition of 1 to 2. The resulting adduct undergoes cyclization in situ by nucleophilic attack, of CH₂CO that act as carbon acid¹⁰, at the cyano group to give the six membered ring which on aromatization gives the N-

amino-2-pyridone 3 .However, as was previously reported 13 , the characterization of the isolated product disagreed with the characterization of N-amino-2 aminopyridone 3 . The IR spectrum of the isolated product displayed characteristic absorption band at about 1650-1670 cm⁻¹ which can be assigned to the carbonyl group, and absence of amino group signal in the 1 nmr (CDCl₃) (in the region δ 5-6 ppm which is normally expected) with appearing of one singlet at region δ 9-10ppm corresponding to NH acidic (D_2O exchangeable). Moreover, the ^{13}C nmr (CDCl₃) spectrum of the isolated product showed signal assigned to carbon atom of the carbonyl group that resonated at the region δ 175-180ppm region corresponding to the isolated products, and does not belong the carbonyl carbon of N-amino 2-pyridone, normally seen in δ 155-160 ppm¹¹ region.

Also, the postulation of formation of N-pyrazolyl derivatives¹² can be eliminated since the 13 C nmr spectrum that showed resonance at δ 140-150 ppm corresponding to the N C Ogroup is absent in the afforded product.

Scheme 1

Cyclization of Michael adduct to a seven membered diazapine ring is possible and must be favored by the high nucleophilic character of CH₂CO due to the presence of base, that act as nucleophile, with respect to the CO-NH group. We suggest that the isolated product is 1,2- diazapinone, and this was supported by analytical and spectral data. The 1Hnmr spectrum of 6-decyl-5-imino-7-oxo-3-(4-nitrophenyl)-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5n as an example showed triplet at δ 2.6 corresponding to CH -6, δ 7.8 and 8.1ppm (2s,2H, 2NH), and δ 9.6ppm corresponding to NH proton. ¹³C-nmr (CDCl₃): δ 175.8 ppm corresponding to CO, δ 157.4 ppm corresponding to CNH, δ

123.2 corresponding to cyano group, δ 38.95 CH-6, δ143.54ppm corresponding to-C-Ar, δ 127.33ppm corresponding to C-CN.

These results prompted us to continue investigation of the reactivity of substituted ethyl (2Z)-2-cyano-3-(substituted) phenylacrylate 6a-c towards fatty acid hydrazide 1b. The reaction may be proceed as in schemel affording 6-alkyl 3-aryl-5,7-dioxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 7a-c.

Scheme 2

The ¹³C nmr (CDCl₃) spectrum of **7b** showed two signals assigned to carbon atoms of two carbonyl group at 176.9,179.142 as characteristic signals for the this structure.

In summary, we have achieved an unexpected synthesis of interesting 1,2- diazapinone derivatives via the reaction of unsaturated nitriles and fatty acid hydrazides.

EXPERIMENTAL

Melting points were taken on a Boetius melting point microscope and are uncorrected . Microanalyses were performed by Microanalytical Unit , National Research Center (Satisfactory microanalysis were obtained C \pm 0.40; H \pm 0.27; N \pm 0.30) . IR spectra were recorded on a Mattson 5000 FT-IR Spectrophotometer . ¹HNMR and ¹³CNMR spectra were determined on a JEOL Hz Spectrometer and Varian Unity Plus , using tetramethylsilane as the internal standard .Mass spectra (MS) were recorded on a Finigan SQ 700 Mass Spectrometer .

Silica gel with fluorescent indicator 254 nm on aluminum sheets layer thickness 0.2 mm were used for Thin Layer Chromatography (TLC). Chloroform was used as eluent system for Thin Layer Chromatography.

Preparation of 1,2- Diazepinone Derivatives 5a-o and 7a-c

General method

To a solution of the fatty acid hydrazide¹ 1a-d (0.01mole) in 20 ml ethanol, 0.02 mole of the appropriate nitrile derivative was added, and a catalytic amount of DBU. The reaction mixture was stirred at room temperature and monitored by TLC. The solid that separated was collected, filtered off, washed with cold diethyl ether and dried affording 5 a-o and 7 a-d

6-butyl-5-imino-3-(3,4,5-trimethoxyphenyl)-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5a, 78%, m.p.134-135 $^{\circ}$ C, C₁₉H₂₄N₄O₄ (372.42), from diethyl ether, IR (γ /cm⁻¹) 3195 (NH), 2225 (CN), 1625 (CO) 1 H-NMR(CDCl₃): 0.9 (t, 3H, CH₃), 1.43 (m, 4H, 2 x CH₂), 1.72-1.78 (m,

2H, CH₂), 2.78 (t, 1H, CH_. 6), 3.9 (s,9H,9xOCH₃-3,4,5), 6.93 (s, 2H, Ar-2,6), 7.29 (s, 1H, NH exchangeable with D_2O), 7.7 (s, 1H, NH exchangeable with D_2O), 9.98 (s, 1H, NH exchangeable with D_2O), Ms:m/z(%)M⁺²-CH(CN)₂, (308,100%); (209, 35%); (193,80%).

3-(2 bromophenyl)-6-butyl-5-imino-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5b, , 72%, m.p.73-74°C, C₁₆H₁₇BrN₄O (361.24), from pet.ether(40-60 °C), IR (γ /cm⁻¹) 3067(NH), 2220 (CN), 1665 (CO), ¹H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.4 (m, 4H, 2x CH₂), 1.74-1.79 (m,2H,CH₂), 2.7(t,1H,CH-6), 7.2-7.6 (m,4H, Ar-H), 8.1 (s,1H,NH exchangeable with D₂O), 8.4 (s,1H,NH exchangeable with D₂O), 9.5 (s,1H,NH exchangeable with D₂O), ¹³C-nmr (CDCl₃): δ 176.6 ppm corresponding to C 0, δ 158.8 ppm corresponding to C NH, δ 124 corresponding to cyano group, δ 35.2 CH-6, δ 32.5, 31.4, 24.8, 13.9ppm corresponding to aliphatic chain, δ 142.4, 124.11, 133.05, 130.55, 127.46, 128.23 ppm corresponding for aryl, δ 146.04ppm corresponding to-C-Ar, δ 128.23ppm corresponding to C-CN, Ms:m/z(%) M⁺²-CH(CN)₂, 297 [(M⁺, Br⁷⁹, 100%)]; 299 [(M,Br⁸¹, 93%)]; 197 [(M, Br⁷⁹, 13%)]; 199 [(M, Br⁸¹, 6%)].

6-butyl-5-imino-3-(4-nitrophenyl)-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5c, .65%, m.p143-144 0 C, C₁₆H₁₇ N₅O₃ (327.34), from pet.ether(40-60), IR (γ/cm⁻¹) 3100(NH), 2230 (CN), 1690 (CO), 1 H-NMR(CDCl₃): 1.0 (t,3H,CH₃), 1.3-1.4 (m, 4H, 2x CH₂), 1.74-1.79 (m,2H,CH₂), 2.6(t,1H,CH-6), 7.2-7.8 (m,4H, Ar-H), 8.4 (s,1H,NH exchangeable with D₂O), 8.7(s,1H,NH exchangeable with D₂O), 9.8 (s,1H,NH exchangeable with D₂O).

6-butyl-5-imino-3-(4-flourophenyl)-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5d 70%, m.p122-123°C, C₁₆H₁₅ FN₄O (298.32), from pet.ether(40-60 °C), IR (γ/cm⁻¹) 3080(NH), 2225 (CN), 1670 (CO), ¹H-NMR(CDCl₃): 1.0 (t,3H,CH₃), 1.3-1.4 (m, 4H, 2x CH₂), 1.6-1.7(m,2H,CH₂), 2.6(t,1H,CH-6), 7.2-7.6 (m,4H, Ar-H), 8.2 (s,1H,NH exchangeable with D₂O), 8.6(s,1H,NH exchangeable with D₂O), 9.4 (s,1H,NH exchangeable with D₂O).

6-hexyl-5-imino-3-(3,4,5-trimethoxyphenyl)-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5e 78%, m.p108-110°C, C₂₁H₂₈ N₄O ₄ (400.47), from pet.ether(40-60 °C), IR (γ/cm⁻¹) 3187(NH), 2225 (CN), 1651 (CO), ¹H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.29-1.39 (m,8H, 4xCH₂), 1.8 (m,2H,CH₂), 2.7 (t,1H,CH-6), 3.88 (s, 3H,OCH₃), 3.9 (s,6H,2xOCH₃), 6.9 (s,2H,Ar), 7.6 (s,1H,NH exchangeable with D₂O), 7.8 (s, 1H, NH exchangeable with D₂O), 10.13 (s, 1H, NH exchangeable with D₂O), M⁺²-CH(CN)₂, 336 (35%);193 (100%).

7-(2-bromophenyl)-6-hexyl-5-imino-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5f 78%, m.p108-110°C, $C_{21}H_{28}$ N₄O ₄ (400.47), from pet.ether(40-60 °C), IR (γ /cm⁻¹) 3200(NH), 2235 (CN), 1700 (CO), ¹H-NMR CDCl₃): 0.9 (t,3H,CH₃), 1.29-1.39 (m,8H, 4xCH₂), 1.8 (m,2H,CH₂), 2.7 (t,1H,CH-6), 3.88 (s, 3H,OCF₃), 3.9 (s,6H,2xOCH₃), 6.9 (s,2H,Ar), 7.6 (s,1H,NH exchangeable with D₂O), 7.8 (s, 1H, NH exchangeable with D₂O), 10.13 (s, 1H, NH exchangeable with D₂O).

6-hexyl-5-imino-3-(4-nitrophenyl)-7-oxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5g 70%, m.p148-150 $^{\circ}$ C, C₁₈H₂₁N₅O₃ (355.35), from pet.ether(40-60 $^{\circ}$ C), IR (γ /cm⁻¹) 3187(NH), 2225 (CN), 1651 (CO), 1 H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.20-1.30 (m,8H, 4xCH₂), 1.9 (m,2H,CH₂), 2.6 (t,1H,CH-6), 7.6-8.2 (m,5H,Ar+NH, exchangeable with D₂O), 7.5 (s,1H,NH exchangeable with D₂O), 9.7 (s, 1H, NH exchangeable with D₂O).

3-(4-fluorophenyl)-6-hexyl-5-imino-7-oxo-2,5,6,7-tetrahydro-1*H*-1,2-diazepine-4-carbonitrile 5h 65%, m.p125-127 $^{\circ}$ C, C₁₈H₂₁ FN₄O (328.38), from pet.ether(40-60 $^{\circ}$ C), IR (γ /cm⁻¹) 3150(NH), 2230(CN), 1690 (CO), 1 H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.20-1.30 (m,8H, 4xCH₂), 1.9 (m,2H,CH₂),

2.4 (t,1H,CH-6), 7.6-8.2 (m,5H,Ar+NH, exchangeable with D_2O), 7.4 (s,1H $\cancel{\bullet}$ NH exchangeable with D_2O), 9.3 (s, 1H, NH exchangeable with D_2O).

5-imino-6-octyl-7-oxo-3-(3,4,5-trimethoxypheny)l-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5k 80%, m.p136-137°C C₂₃ H₃₂N₄ O₄ (428.52), from pet.ether(40-60 °C), IR (γ /cm⁻¹) 3066(NH), 2235(CN), 1662 (CO), ¹H-NMR(CDCl₃): 0.85 (t,3H,CH₃), 1.27-1.4 (m,12H, 6x CH₂), 1.7 (m,2H,CH₂),2.6(t,1H,CH-6), 3.88 (s,3H,OCH₃), 3.9 (s,6H,2xOCH₃), 6.93 (s,2H,Ar), 7.8 (s, 1H, NH exchangeable with D₂O), 8.4 (s, 1H, NH exchangeable with D₂O), 10.4 (s, 1H, NH exchangeable with D₂O), M-2-CH(CN)₂, 364 (60%);193 (100);178 (25%).

5-imino-6-octyl-7-oxo-3-(4-nitropheny)l-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5l: 82%, m.p156-157°C ,C₂₀ H₃₅N₅ O₃ (383.20), IR (γ /cm⁻¹) 3180(NH), 2226(CN), 1664 (CO) , ¹H-NMR(CDCl₃): 0.8 (t,3H,CH₃), 1.3-1.4 (m,12H, 6xCH₂), 1.6-1.7 (m,2H,CH₂), 2.7 (t,1H,CH-6), 7.29 (s,1H, NH exchangeable with D₂O), 7.6-7.7 (dd,2H,Ar, J = 8.4 Hz), 7.8 (s,1H, NH exchangeable with D₂O), 8.3-8.4 (dd, 2H, Ar, J = 8.4 Hz), 9.98 (s,1H, NH exchangeable with D₂O), M⁺-CH(CN)₂, 320 (15%);193 (100).

6-decyl-5-imino-7-oxo-3-(3,4,5-trimethoxypheny)l-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 5m: 84%,m.p.112-113°C, C₂₅H₃₆N₄O₄ (456.58), from petroleum ether (40-60 °C) IR (γ /cm⁻¹) 3190(NH), 2230(CN),1665 (CO), ¹H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.4-1.25 (m,14H, 7xCH₂), 1.7 (m,3H,CH₂+CH), 2.7 (t,1H,CH-6), 3.88 (s,3H,OCH₃), 3.9 (s,6H,2xOCH₃), 6.9 (s,2H,Ar), 7.8, 8,2 (2s,2H,2NH exchangeable with D₂O), 10.5 (s,1H,NH exchangeable with D₂O)., M⁺²-CH(CN)₂, 392 (40%);193 (100).

6-decyl-5-imino-7-oxo-3-(4-nitrophenyl)-2,5,6,7-tetrahydro-1*H*-1,2-diazepine-4-carbonitrile 5n 88%,m.p.122-123°C, $C_{22}H_{29}N_5O_3$ (411.50),from petroleum ether (40-60 °C), IR (γ/cm⁻¹) 3090(NH), 2230(CN),1665 (CO), ¹H-NMR(CDCl₃): 0.8 (t,3H,CH₃), 1.4 (m,16H, 8 x CH₂), 1.7 (m,2H,CH₂), 2.6 (t, 1H,CH-6), 7.6-7.7 (dd,2H,Ar, J=8.5 Hz), 7.8 (s,1H,NH exchangeable with D₂O), 8.1 (s,1H,NH exchangeable with D₂O), 8.4-8.3 (dd, 2H,Ar, J = 8.5 Hz), 9.6 (s,1H, NH exchangeable with D₂O),), ¹³C-nmr (CDCl₃): δ 175.8 ppm corresponding to CO, δ 157.4 ppm corresponding to C NH, δ 123.2 corresponding to cyano group, δ 38.95 CH-6, δ 34.47, 31.93, 31.22, 28,95, 28.84, 28.74, 24.997, 24.063,21.997, 13.515ppm corresponding to aliphatic chain, δ 147.24,126.77, 123.83, 139.64, 130.93, 123.31ppm corresponding for aryl, δ 143.54ppm corresponding to C-Ar, δ 127.33ppm corresponding to C-CN, M^{+1} -CH(CN)₂, 348 (10%);193 (100).

3-(2-bromophenyl)-6-decyl-5-imino-7-oxo-2,5,6,7-tetrahydro-1*H*-1,2-diazepine-4-carbonitrile 5o: 85%,m.p.82-83°C, $C_{22}H_{29}$ BrN₄O (445.40),from petroleum ether (40-60 °C), IR (γ/cm⁻¹) 3070(NH), 2195(CN),1665 (CO), ¹H-NMR(CDCl₃): 0.84 (t,3H,CH₃), 1.2-1.6 (m, 16H,8xCH₂), 1.7 (m,2H,CH₂), 2.7 (t,1H,CH -6), 7.2-7.6 (m,4H,Ar), 7.8 (s,1H,NH exchangeable with D₂O), 8.1 (s,1H,NH exchangeable with D₂O), 10.0 (s,1H, NH exchangeable with D₂O), ¹³C-nmr (CDCl₃): δ 176.5 ppm corresponding to CO , δ 158.7 ppm corresponding to C NH, δ 124.20 corresponding to cyano group, δ 35.02 CH-6 , δ 32.616, 31.826, 29.562, 29.436, 29.31, 29.224, 25.536, 24.656, 22.54, 14.054ppm corresponding to aliphatic chain, δ 146.037, 127.26, 133.989, 134.897, 130.961, 133.082 ppm corresponding for aryl, δ 142.23 ppm corresponding to-C-Ar, δ 127.56ppm corresponding to C-CN.

6-butyl-5,7-dioxo-3-(3,4,5-trimethoxyphenyl)-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile

7a: 75%, m.p.77-78 $^{\circ}$ C, C₁₉H₂₃N₃O₅ (373.40), from petroleum ether (40-60 $^{\circ}$ C), IR (γ /cm 1) 3370(NH), 2190(CN),1665 (CO)

¹H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.2 (m, 4H,2xCH₂), 1.7 (m,2H,CH₂), 2.9 (t,1H,CH-6), 4.1(s,9H,3xOCH₃), 7.1 (s,2H,Ar-2,6), 7.8 (s,1H,NH exchangeable with D₂O), 8.1 (s,1H,NH exchangeable with D₂O).

6-butyl-3-(4-flourophenyl)-5,7-dioxo-2,5,6,7-tetrahydro-1*H*-1,2-diazepine-4-carbonitrile 7b: 70%, m.p. $68-69^{\circ}$ C, C₁₆H₁₆FN₃O₂ (301.32),from petroleum ether (40-60 °C), IR (γ/cm⁻¹) 33550(NH), 2230(CN),1645 (CO), ¹H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.3 (m, 4H,2xCH₂), 1.8 (m,2H,CH₂), 3.0 (t,1H,CH -6), 7.2-7.9 (m,5H,Ar ÷ NH, exchangeable with D₂O), 8.4 (s,1H,NH exchangeable with D₂O). ¹³C-nmr (CDCl₃): δ 176.9 and 179.1 ppm corresponding to two *C* O, δ 123.20 corresponding to cyano group, δ 34.5 CH-6, δ 31.81,29.36,29.32,29.24,29.2,29.82,22.61,14.06 ppm corresponding to aliphatic chain, δ 165.498(244HJz), 116.802(24.9 Hz),128.859(9.6Hz) 130.243 attributed for aromatic ring. 142.43(C5),136.243(C6), δ 142.43 ppm corresponding to C-CN.

6-butyl-3-(4-nitrophenyl)-5,7-dioxo-2,5,6,7-tetrahydro-1H-1,2-diazepine-4-carbonitrile 7c: 65%, m.p. 98-100°C, $C_{16}H_{16}N_4O_4$ (328.32), from petroleum ether (40-60 °C), IR (γ /cm⁻¹) 3370(NH), 2280(CN),1680 (CO), ¹H-NMR(CDCl₃): 0.9 (t,3H,CH₃), 1.2 (m, 4H,2xCH₂), 1.9 (m,2H,CH₂), 3.1 (t,1H,CH-6), 7.6-8.5 (m,6H,Ar + 2NH, exchangeable with D₂O).

REFERENCES

- 1- Daulatabad, C.D. and .Mirajkar, A.M. The Journal of the Oil Technologists' Association of India. 1988 ,XX,9-11.
- 2 Raval, D.A. and Toliwal, S.D. The Journal of the Oil Technologists' Association of India. 1994 XXVI. 27-29.
- 3 El-Nagdi.M.H.; Faham H.A.; and Galal.E.El-Gemeie, Heterocycles 1983,26(3).
- 4 Zaki, M.E.A and Fathalla, O.A., Indian Journal of Heterocyclic Chemistry 1997, 7, 113-118.
- 5- .Zaki, M.E.A., M.Fernanda Proenca, Brain L.Booth, Journal of Organic Chemistry, 2003, 68(2),276-282.
- 6-- Hart.H, Freeman.F Chem. Ind.(London) 1962,332.
- 7- Von Brachel.H and Bahr.U in Hauben.Weyl" Methoden der Organischen Chemie "4th ed Muller.E,Ed. George Thieme Verlag Stuttgart 1970, p519.
- 8- Soto.J.L, Sedane.C, Zamo ano.P, Javier F. Cuadrado Synthesis 1981,529-531.
- 9- Psetch.E, Clesc.T, Seibl.J, and Simon.W .Springer-Verl of Berlin 1983 .
- 10- Gordon, A.J.; Ford,R.A., In The Chemists Companion: A Hand Book of Practiacl Data, Techniques and References; John Wiley&Sons; USA;1972;p 62.
- 11- El-Gemeie G.E., Ahmed .H.El-Ghandour, Ah.M Elzanate Wafaa A. Mosoud, J.Chem Res(S), 1998,5,164-165.
- 12- Cocco.M.T.; Congiu.G; Onnis.V; Bernard and A.M.; Piraz .pp., J. Hetercyclic Chem.,1999,36,1183.

Received on February 28, 2003